证明多元函数极限不存在的一个解法

对于多元函数

f

(

x

)

f(x)

f(x)来说,证明其在某一点

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)处极限不存在的方法就是找到两条不同的趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)的路径,使得

f

(

x

,

y

)

f(x,y)

f(x,y)在这两条路径上趋于不同的值。
对于二元函数

f

(

x

,

y

)

f(x,y)

f(x,y)来说,

(

x

,

y

)

(x,y)

(x,y)沿任意路径趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)时二元函数

f

(

x

,

y

)

f(x,y)

f(x,y)趋于同一个值A,则重极限

lim

(

x

,

y

)

(

x

0

,

y

0

)

f

(

x

,

y

)

\lim \limits_{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)

(x,y)(x0,y0)limf(x,y)存在且也等于A.
这一性质常常用来证明二元函数

f

(

x

,

y

)

f(x,y)

f(x,y)

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)这点的极限不存在,即找到两条趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)的路径,使得二元函数

f

(

x

)

f(x)

f(x)在这两条路径上趋于不同的值。然而,在绝大多数的数学分析教科书中,常常只介绍利用相对简单的径向路径来证明一个二元函数在某一点的极限不存在,即当二元函数

f

(

x

,

y

)

f(x,y)

f(x,y)沿着

y

=

k

x

y=kx

y=kx这些路径趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)时,若极限与径向的斜率

k

k

k相关,则二元函数

f

(

x

,

y

)

f(x,y)

f(x,y)

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)这点的极限不存在。而这种方法对些相对较为复杂的二元函数

f

(

x

,

y

)

f(x,y)

f(x,y)通常是失效的例如,考虑二元函数

f

(

x

,

y

)

=

x

2

y

2

x

3

+

y

3

f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}}

f(x,y)=x3+y3x2y2

(

x

,

y

)

(x,y)

(x,y)趋于

(

0

,

0

)

(0,0)

(0,0)的极限时,不难发现

(

x

,

y

)

(x,y)

(x,y)沿着径向路径

y

=

k

x

y=kx

y=kx的极限都为0.然而

f

(

x

,

y

)

=

x

2

y

2

x

3

+

y

3

f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}}

f(x,y)=x3+y3x2y2

(

x

,

y

)

(x,y)

(x,y)趋于

(

0

,

0

)

(0,0)

(0,0)是不存在极限的,若考虑路径

y

=

x

+

α

2

x

2

y=-x+\frac{\alpha}{2} x^{2}

y=x+2αx2,则

lim

(

x

,

y

)

(

0

,

0

)

x

2

y

2

x

3

+

y

3

=

lim

y

=

x

+

α

2

x

2

+

2

(

α

2

)

3

x

3

α

x

2

+

x

(

α

2

)

3

x

3

3

(

α

2

)

2

x

2

+

3

α

2

x

=

2

3

α

\begin{aligned} &\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{3}+y^{3}}=\lim _{y=-x+\frac{\alpha}{2} x^{2}+2} \frac{\left(\frac{\alpha}{2}\right)^{3} x^{3}-\alpha x^{2}+x}{\left(\frac{\alpha}{2}\right)^{3} x^{3}-3\left(\frac{\alpha}{2}\right)^{2} x^{2}+3 \frac{\alpha}{2} x}\\ &=\frac{2}{3 \alpha} \end{aligned}

(x,y)(0,0)limx3+y3x2y2=y=x+2αx2+2lim(2α)3x33(2α)2x2+32αx(2α)3x3αx2+x=3α2

下面我们老考虑这些极限是怎样计算出来的

事实上,从解析几何的观点来看,

(

x

,

y

)

(x,y)

(x,y)沿某一路径趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)可以被理解为

(

x

,

y

)

(x,y)

(x,y)在趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)的过程中,变量y是一个关于变量x的函数,即

y

=

y

(

x

)

y=y(x)

y=y(x),而且这个函数还满足

y

0

=

y

(

x

0

)

y_{0}=y\left(x_{0}\right)

y0=y(x0)。因此,

(

x

,

y

)

(x,y)

(x,y)沿某一路径趋于

(

x

0

,

y

0

)

(x_0,y_0)

(x0,y0)时,

f

(

x

,

y

)

f(x,y)

f(x,y)的极限可以理解为复合函数

£

f

(

x

,

y

(

x

)

)

£ f(x, y(x))

£f(x,y(x))

x

x

0

x \longrightarrow x_{0}

xx0时的极限。在这种观点下,我们将利用一元函数的洛必达法则来探索上述这些路径是如何被发现的。

首先考虑

f

(

x

,

y

)

=

x

3

+

y

3

x

2

+

y

f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y}

f(x,y)=x2+yx3+y3,由于此时我们将

y

y

y看成是一个

x

x

x的函数,故当

y

=

x

2

+

g

(

x

)

y=-x^{2}+g(x)

y=x2+g(x)

lim

x

0

g

(

x

)

=

0

\lim \limits_{x \rightarrow 0} g(x)=0

x0limg(x)=0时,

lim

(

x

,

y

)

(

0

,

0

)

x

3

+

y

3

x

2

+

y

\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y}

(x,y)(0,0)limx2+yx3+y3是一个关于变量

x

x

x

0

0

\frac{0}{0}

00极限,我们知道,

0

0

\frac{0}{0}

00不定式的极限与分子和分母两个因子的阶数有关。我们假设

y

=

x

2

+

g

(

x

)

y=-x^{2}+g(x)

y=x2+g(x),分子分母同时求导可得:

lim

x

0

3

x

2

+

3

y

2

y

2

x

+

y

\lim _{x \rightarrow 0} \frac{3 x^{2}+3 y^{2} y}{2 x+y^{\prime}}

x0lim2x+y3x2+3y2y
若进一步,还有

lim

x

0

g

(

x

)

=

0

\lim \limits_{x \rightarrow 0} g^{\prime}(x)=0

x0limg(x)=0,再次进行求导,可得

lim

x

0

6

x

+

6

y

y

+

3

y

2

y

2

+

y

\lim _{x \rightarrow 0} \frac{6 x+6 y y^{\prime}+3 y^{2} y^{\prime \prime}}{2+y^{\prime \prime}}

x0lim2+y6x+6yy+3y2y
若再一次假设

lim

x

0

g

(

x

)

=

0

\lim \limits_{x \rightarrow 0} g^{\prime \prime}(x)=0

x0limg(x)=0,再次求导得

lim

x

0

6

+

6

(

y

)

2

+

12

y

y

+

3

y

2

y

y

\lim _{x \rightarrow 0} \frac{6+6(y)^{2}+12 y y^{\prime \prime}+3 y^{2} y^{\prime \prime \prime}}{y^{\prime \prime \prime}}

x0limy6+6(y)2+12yy+3y2y
由于

lim

x

0

g

(

x

)

=

lim

x

0

g

(

x

)

=

lim

x

0

g

(

x

)

=

0

\lim \limits_{x \rightarrow 0} g(x)=\lim \limits_{x \rightarrow 0} g(x)=\lim \limits_{x \rightarrow 0} g^{\prime \prime}(x)=0

x0limg(x)=x0limg(x)=x0limg(x)=0,我们对上式进行积分,可得

y

=

x

2

+

α

6

x

3

y=-x^{2}+\frac{\alpha}{6} x^{3}

y=x2+6αx3

下面几个例题都可以采用上述方法

例题一:求极限

lim

(

x

,

y

)

(

0

,

0

)

x

y

x

+

y

\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}

(x,y)(0,0)limx+yxy
解析:当

(

x

,

y

)

(x,y)

(x,y)沿

y

=

k

x

y=kx

y=kx趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

x

0

y

0

x

y

x

+

y

=

lim

x

0

y

=

k

x

x

y

x

+

y

=

lim

x

0

x

k

x

x

+

k

x

=

1

k

1

+

k

\lim _{x \rightarrow 0 \atop y \rightarrow 0} \frac{x-y}{x+y}=\lim _{x \rightarrow 0 \atop y=k x} \frac{x-y}{x+y}=\lim _{x \rightarrow 0} \frac{x-k x}{x+k x}=\frac{1-k}{1+k}

y0x0limx+yxy=y=kxx0limx+yxy=x0limx+kxxkx=1+k1k
所以极限不存在。

例题二:求极限

lim

(

x

,

y

)

(

0

,

0

)

x

2

y

2

x

2

y

2

+

(

x

y

)

2

\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}

(x,y)(0,0)limx2y2+(xy)2x2y2

解析:当

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

x

y=x

y=x趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

(

x

,

y

)

(

0

,

0

)

x

2

y

2

x

2

y

2

+

(

x

y

)

2

=

lim

x

0

x

2

y

2

x

2

y

2

+

(

x

y

)

2

=

lim

x

2

x

2

x

2

x

2

x

2

+

(

x

x

)

2

=

1

\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} &=\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\ &=\lim _{x \rightarrow 2} \frac{x^{2} x^{2}}{x^{2} x^{2}+(x-x)^{2}}=1 \end{aligned}

(x,y)(0,0)limx2y2+(xy)2x2y2=x0limx2y2+(xy)2x2y2=x2limx2x2+(xx)2x2x2=1

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

0

y=0

y=0趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

(

x

,

y

)

(

0

,

0

)

x

2

y

2

x

2

y

2

+

(

x

y

)

2

=

lim

x

0

x

2

y

2

x

2

y

2

+

(

x

y

)

2

=

lim

x

0

x

2

0

2

x

2

0

2

+

(

x

0

)

2

=

0

\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} &=\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\ &=\lim _{x \rightarrow 0} \frac{x^{2} 0^{2}}{x^{2} 0^{2}+(x-0)^{2}}=0 \end{aligned}

(x,y)(0,0)limx2y2+(xy)2x2y2=x0limx2y2+(xy)2x2y2=x0limx202+(x0)2x202=0
因此极限不存在。

例题三:求极限

lim

(

x

,

y

)

(

0

,

0

)

x

3

+

y

3

x

2

+

y

\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y}

(x,y)(0,0)limx2+yx3+y3

解析:当

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

k

x

3

x

2

y=k x^{3}-x^{2}

y=kx3x2趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

(

x

,

y

)

(

0

,

0

)

x

3

+

y

3

x

2

+

y

=

lim

x

0

x

3

+

y

3

x

2

+

y

=

lim

x

=

k

x

3

x

2

x

3

+

(

k

x

3

x

2

)

3

x

2

+

k

x

3

x

2

=

1

k

\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y} &=\lim _{x \rightarrow 0} \frac{x^{3}+y^{3}}{x^{2}+y} \\ &=\lim _{x=k x^{3}-x^{2}} \frac{x^{3}+\left(k x^{3}-x^{2}\right)^{3}}{x^{2}+k x^{3}-x^{2}} \\ &=\frac{1}{k} \end{aligned}

(x,y)(0,0)limx2+yx3+y3=x0limx2+yx3+y3=x=kx3x2limx2+kx3x2x3+(kx3x2)3=k1
显然其随着k值得变化而变化,所以不是极值。

例题四:求极限

lim

(

x

,

y

)

(

0

,

0

)

x

ln

(

1

+

x

y

)

x

+

y

\lim \limits_{(x, y) \rightarrow(0,0)} x \frac{\ln (1+x y)}{x+y}

(x,y)(0,0)limxx+yln(1+xy)
解析:当

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

x

α

x

y=x^{\alpha}-x

y=xαx趋向于

(

0

,

0

)

(0,0)

(0,0)时,

lim

(

x

,

y

)

(

0

,

0

)

x

ln

(

1

+

x

y

)

x

+

y

=

lim

(

x

,

y

)

(

0

,

0

)

x

2

y

x

+

y

=

lim

x

0

y

=

x

α

x

x

2

y

x

+

y

=

lim

x

0

x

α

+

2

x

3

x

α

=

lim

x

0

(

x

2

x

3

α

)

=

{

1

,

α

=

3

0

,

α

<

3

0

,

α

>

3

\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} x \frac{\ln (1+x y)}{x+y} &=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x+y} \\ &=\lim _{x \rightarrow 0 \atop y=x^{\alpha}-x} \frac{x^{2} y}{x+y}=\lim _{x \rightarrow 0} \frac{x^{\alpha+2}-x^{3}}{x^{\alpha}} \\ &=\lim _{x \rightarrow 0}\left(x^{2}-x^{3-\alpha}\right)=\left\{\begin{array}{ll} -1, & \alpha=3 \\ 0, & \alpha<3 \\ 0, & \alpha>3 \end{array}\right. \end{aligned}

(x,y)(0,0)limxx+yln(1+xy)=(x,y)(0,0)limx+yx2y=y=xαxx0limx+yx2y=x0limxαxα+2x3=x0lim(x2x3α)=1,0,0,α=3α<3α>3
故极限不存在。

例题五:求极限

lim

(

x

,

y

)

(

0

,

0

)

x

y

x

+

y

\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x y}{x+y}

(x,y)(0,0)limx+yxy

解析:当

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

x

2

x

y=x^{2}-x

y=x2x趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

(

x

,

y

)

(

0

,

0

)

x

y

x

+

y

=

lim

x

0

y

=

x

2

x

x

y

x

+

y

=

lim

x

0

x

(

x

2

x

)

x

+

x

2

x

=

lim

x

0

(

x

1

)

=

1

\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x+y} &=\lim _{x \rightarrow 0 \atop y=x^{2}-x} \frac{x y}{x+y} \\ &=\lim _{x \rightarrow 0} \frac{x\left(x^{2}-x\right)}{x+x^{2}-x} \\ &=\lim _{x \rightarrow 0}(x-1)=-1 \end{aligned}

(x,y)(0,0)limx+yxy=y=x2xx0limx+yxy=x0limx+x2xx(x2x)=x0lim(x1)=1

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

x

y=x

y=x趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

(

x

,

y

)

(

0

,

0

)

x

y

x

+

y

=

lim

x

0

y

=

x

x

y

x

+

y

=

lim

x

0

x

2

2

x

=

0

\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x+y}=\lim _{x \rightarrow 0 \atop y=x} \frac{x y}{x+y}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x}=0

(x,y)(0,0)limx+yxy=y=xx0limx+yxy=x0lim2xx2=0
故极限不存在。

例题六:求证

lim

(

x

,

y

)

(

0

,

0

)

x

y

\lim \limits_{(x, y) \rightarrow(0,0)} x^y

(x,y)(0,0)limxy不存在
证明:当

(

x

,

y

)

(x,y)

(x,y)沿着

y

=

k

ln

x

y=\frac{k}{\ln x}

y=lnxk趋向于

(

0

,

0

)

(0,0)

(0,0)时,有

lim

(

x

,

y

)

(

0

,

0

)

x

y

=

e

k

\lim _{(x, y) \rightarrow(0,0)} x^y=e^k

(x,y)(0,0)limxy=ek
所以极限不存在

例题七:求证

lim

(

x

,

y

)

(

1

,

1

3

)

tan

3

π

y

12

y

4

arctan

x

1

x

4

\lim \limits_{(x, y) \rightarrow\left(1, \frac{1}{3}\right)} \frac{\frac{\tan 3 \pi y}{12 y-4}-\arctan x}{1-x^{4}}

(x,y)(1,31)lim1x412y4tan3πyarctanx不存在
证明:
因为

tan

3

π

y

12

y

4

=

π

4

+

π

3

12

(

3

y

1

)

2

+

O

(

(

3

y

1

)

4

)

\frac{\tan 3 \pi y}{12 y-4}=\frac{\pi}{4}+\frac{\pi^{3}}{12}(3 y-1)^{2}+O\left((3 y-1)^{4}\right)

12y4tan3πy=4π+12π3(3y1)2+O((3y1)4)

x

=

3

y

x=3y

x=3y,则

tan

3

π

y

12

y

4

arctan

x

=

1

x

2

+

o

(

1

x

)

lim

(

x

,

y

)

(

1

,

1

3

)

tan

3

π

y

12

y

4

arctan

x

1

x

4

=

lim

x

1

1

x

2

+

o

(

1

x

)

1

x

4

=

1

8

\begin{array}{l} \frac{\tan 3 \pi y}{12 y-4}-\arctan x=\frac{1-x}{2}+o(1-x) \\ \lim _{(x, y) \rightarrow\left(1, \frac{1}{3}\right)} \frac{\frac{\tan 3 \pi y}{12 y-4}-\arctan x}{1-x^{4}}=\lim _{x \rightarrow 1} \frac{\frac{1-x}{2}+o(1-x)}{1-x^{4}}=\frac{1}{8} \end{array}

12y4tan3πyarctanx=21x+o(1x)lim(x,y)(1,31)1x412y4tan3πyarctanx=limx11x421x+o(1x)=81

3

y

1

=

1

x

3

3 y-1=\sqrt[3]{1-x}

3y1=31x

则有
KaTeX parse error: Expected group after '_' at position 239: …{1-x^{4}}=\lim _̲\limits{x \righ…
故极限不存在。


版权声明:本文为baidu_41922918原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
THE END
< <上一篇
下一篇>>