证明多元函数极限不存在的一个解法
对于多元函数
f
(
x
)
f(x)
f(x)来说,证明其在某一点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)处极限不存在的方法就是找到两条不同的趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)的路径,使得
f
(
x
,
y
)
f(x,y)
f(x,y)在这两条路径上趋于不同的值。
对于二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)来说,
(
x
,
y
)
(x,y)
(x,y)沿任意路径趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)时二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)趋于同一个值A,则重极限
lim
(
x
,
y
)
→
(
x
0
,
y
0
)
f
(
x
,
y
)
\lim \limits_{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)
(x,y)→(x0,y0)limf(x,y)存在且也等于A.
这一性质常常用来证明二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)在
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)这点的极限不存在,即找到两条趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)的路径,使得二元函数
f
(
x
)
f(x)
f(x)在这两条路径上趋于不同的值。然而,在绝大多数的数学分析教科书中,常常只介绍利用相对简单的径向路径来证明一个二元函数在某一点的极限不存在,即当二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)沿着
y
=
k
x
y=kx
y=kx这些路径趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)时,若极限与径向的斜率
k
k
k相关,则二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)在
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)这点的极限不存在。而这种方法对些相对较为复杂的二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)通常是失效的例如,考虑二元函数
f
(
x
,
y
)
=
x
2
y
2
x
3
+
y
3
f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}}
f(x,y)=x3+y3x2y2在
(
x
,
y
)
(x,y)
(x,y)趋于
(
0
,
0
)
(0,0)
(0,0)的极限时,不难发现
(
x
,
y
)
(x,y)
(x,y)沿着径向路径
y
=
k
x
y=kx
y=kx的极限都为0.然而
f
(
x
,
y
)
=
x
2
y
2
x
3
+
y
3
f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{3}}
f(x,y)=x3+y3x2y2在
(
x
,
y
)
(x,y)
(x,y)趋于
(
0
,
0
)
(0,0)
(0,0)是不存在极限的,若考虑路径
y
=
−
x
+
α
2
x
2
y=-x+\frac{\alpha}{2} x^{2}
y=−x+2αx2,则
lim
(
x
,
y
)
→
(
0
,
0
)
x
2
y
2
x
3
+
y
3
=
lim
y
=
−
x
+
α
2
x
2
+
2
(
α
2
)
3
x
3
−
α
x
2
+
x
(
α
2
)
3
x
3
−
3
(
α
2
)
2
x
2
+
3
α
2
x
=
2
3
α
\begin{aligned} &\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{3}+y^{3}}=\lim _{y=-x+\frac{\alpha}{2} x^{2}+2} \frac{\left(\frac{\alpha}{2}\right)^{3} x^{3}-\alpha x^{2}+x}{\left(\frac{\alpha}{2}\right)^{3} x^{3}-3\left(\frac{\alpha}{2}\right)^{2} x^{2}+3 \frac{\alpha}{2} x}\\ &=\frac{2}{3 \alpha} \end{aligned}
(x,y)→(0,0)limx3+y3x2y2=y=−x+2αx2+2lim(2α)3x3−3(2α)2x2+32αx(2α)3x3−αx2+x=3α2
下面我们老考虑这些极限是怎样计算出来的
事实上,从解析几何的观点来看,
(
x
,
y
)
(x,y)
(x,y)沿某一路径趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)可以被理解为
(
x
,
y
)
(x,y)
(x,y)在趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)的过程中,变量y是一个关于变量x的函数,即
y
=
y
(
x
)
y=y(x)
y=y(x),而且这个函数还满足
y
0
=
y
(
x
0
)
y_{0}=y\left(x_{0}\right)
y0=y(x0)。因此,
(
x
,
y
)
(x,y)
(x,y)沿某一路径趋于
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)时,
f
(
x
,
y
)
f(x,y)
f(x,y)的极限可以理解为复合函数
£
f
(
x
,
y
(
x
)
)
£ f(x, y(x))
£f(x,y(x))在
x
⟶
x
0
x \longrightarrow x_{0}
x⟶x0时的极限。在这种观点下,我们将利用一元函数的洛必达法则来探索上述这些路径是如何被发现的。
首先考虑
f
(
x
,
y
)
=
x
3
+
y
3
x
2
+
y
f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y}
f(x,y)=x2+yx3+y3,由于此时我们将
y
y
y看成是一个
x
x
x的函数,故当
y
=
−
x
2
+
g
(
x
)
y=-x^{2}+g(x)
y=−x2+g(x)且
lim
x
→
0
g
(
x
)
=
0
\lim \limits_{x \rightarrow 0} g(x)=0
x→0limg(x)=0时,
lim
(
x
,
y
)
→
(
0
,
0
)
x
3
+
y
3
x
2
+
y
\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y}
(x,y)→(0,0)limx2+yx3+y3是一个关于变量
x
x
x的
0
0
\frac{0}{0}
00极限,我们知道,
0
0
\frac{0}{0}
00不定式的极限与分子和分母两个因子的阶数有关。我们假设
y
=
−
x
2
+
g
(
x
)
y=-x^{2}+g(x)
y=−x2+g(x),分子分母同时求导可得:
lim
x
→
0
3
x
2
+
3
y
2
y
2
x
+
y
′
\lim _{x \rightarrow 0} \frac{3 x^{2}+3 y^{2} y}{2 x+y^{\prime}}
x→0lim2x+y′3x2+3y2y
若进一步,还有
lim
x
→
0
g
′
(
x
)
=
0
\lim \limits_{x \rightarrow 0} g^{\prime}(x)=0
x→0limg′(x)=0,再次进行求导,可得
lim
x
→
0
6
x
+
6
y
y
′
+
3
y
2
y
′
′
2
+
y
′
′
\lim _{x \rightarrow 0} \frac{6 x+6 y y^{\prime}+3 y^{2} y^{\prime \prime}}{2+y^{\prime \prime}}
x→0lim2+y′′6x+6yy′+3y2y′′
若再一次假设
lim
x
→
0
g
′
′
(
x
)
=
0
\lim \limits_{x \rightarrow 0} g^{\prime \prime}(x)=0
x→0limg′′(x)=0,再次求导得
lim
x
→
0
6
+
6
(
y
)
2
+
12
y
y
′
′
+
3
y
2
y
′
′
′
y
′
′
′
\lim _{x \rightarrow 0} \frac{6+6(y)^{2}+12 y y^{\prime \prime}+3 y^{2} y^{\prime \prime \prime}}{y^{\prime \prime \prime}}
x→0limy′′′6+6(y)2+12yy′′+3y2y′′′
由于
lim
x
→
0
g
(
x
)
=
lim
x
→
0
g
(
x
)
=
lim
x
→
0
g
′
′
(
x
)
=
0
\lim \limits_{x \rightarrow 0} g(x)=\lim \limits_{x \rightarrow 0} g(x)=\lim \limits_{x \rightarrow 0} g^{\prime \prime}(x)=0
x→0limg(x)=x→0limg(x)=x→0limg′′(x)=0,我们对上式进行积分,可得
y
=
−
x
2
+
α
6
x
3
y=-x^{2}+\frac{\alpha}{6} x^{3}
y=−x2+6αx3
下面几个例题都可以采用上述方法
例题一:求极限
lim
(
x
,
y
)
→
(
0
,
0
)
x
−
y
x
+
y
\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}
(x,y)→(0,0)limx+yx−y
解析:当
(
x
,
y
)
(x,y)
(x,y)沿
y
=
k
x
y=kx
y=kx趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
x
→
0
y
→
0
x
−
y
x
+
y
=
lim
x
→
0
y
=
k
x
x
−
y
x
+
y
=
lim
x
→
0
x
−
k
x
x
+
k
x
=
1
−
k
1
+
k
\lim _{x \rightarrow 0 \atop y \rightarrow 0} \frac{x-y}{x+y}=\lim _{x \rightarrow 0 \atop y=k x} \frac{x-y}{x+y}=\lim _{x \rightarrow 0} \frac{x-k x}{x+k x}=\frac{1-k}{1+k}
y→0x→0limx+yx−y=y=kxx→0limx+yx−y=x→0limx+kxx−kx=1+k1−k
所以极限不存在。
例题二:求极限
lim
(
x
,
y
)
→
(
0
,
0
)
x
2
y
2
x
2
y
2
+
(
x
−
y
)
2
\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}
(x,y)→(0,0)limx2y2+(x−y)2x2y2
解析:当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
x
y=x
y=x趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
(
x
,
y
)
→
(
0
,
0
)
x
2
y
2
x
2
y
2
+
(
x
−
y
)
2
=
lim
x
→
0
x
2
y
2
x
2
y
2
+
(
x
−
y
)
2
=
lim
x
→
2
x
2
x
2
x
2
x
2
+
(
x
−
x
)
2
=
1
\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} &=\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\ &=\lim _{x \rightarrow 2} \frac{x^{2} x^{2}}{x^{2} x^{2}+(x-x)^{2}}=1 \end{aligned}
(x,y)→(0,0)limx2y2+(x−y)2x2y2=x→0limx2y2+(x−y)2x2y2=x→2limx2x2+(x−x)2x2x2=1
当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
0
y=0
y=0趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
(
x
,
y
)
→
(
0
,
0
)
x
2
y
2
x
2
y
2
+
(
x
−
y
)
2
=
lim
x
→
0
x
2
y
2
x
2
y
2
+
(
x
−
y
)
2
=
lim
x
→
0
x
2
0
2
x
2
0
2
+
(
x
−
0
)
2
=
0
\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} &=\lim _{x \rightarrow 0} \frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \\ &=\lim _{x \rightarrow 0} \frac{x^{2} 0^{2}}{x^{2} 0^{2}+(x-0)^{2}}=0 \end{aligned}
(x,y)→(0,0)limx2y2+(x−y)2x2y2=x→0limx2y2+(x−y)2x2y2=x→0limx202+(x−0)2x202=0
因此极限不存在。
例题三:求极限
lim
(
x
,
y
)
→
(
0
,
0
)
x
3
+
y
3
x
2
+
y
\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y}
(x,y)→(0,0)limx2+yx3+y3
解析:当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
k
x
3
−
x
2
y=k x^{3}-x^{2}
y=kx3−x2趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
(
x
,
y
)
→
(
0
,
0
)
x
3
+
y
3
x
2
+
y
=
lim
x
→
0
x
3
+
y
3
x
2
+
y
=
lim
x
=
k
x
3
−
x
2
x
3
+
(
k
x
3
−
x
2
)
3
x
2
+
k
x
3
−
x
2
=
1
k
\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y} &=\lim _{x \rightarrow 0} \frac{x^{3}+y^{3}}{x^{2}+y} \\ &=\lim _{x=k x^{3}-x^{2}} \frac{x^{3}+\left(k x^{3}-x^{2}\right)^{3}}{x^{2}+k x^{3}-x^{2}} \\ &=\frac{1}{k} \end{aligned}
(x,y)→(0,0)limx2+yx3+y3=x→0limx2+yx3+y3=x=kx3−x2limx2+kx3−x2x3+(kx3−x2)3=k1
显然其随着k值得变化而变化,所以不是极值。
例题四:求极限
lim
(
x
,
y
)
→
(
0
,
0
)
x
ln
(
1
+
x
y
)
x
+
y
\lim \limits_{(x, y) \rightarrow(0,0)} x \frac{\ln (1+x y)}{x+y}
(x,y)→(0,0)limxx+yln(1+xy)
解析:当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
x
α
−
x
y=x^{\alpha}-x
y=xα−x趋向于
(
0
,
0
)
(0,0)
(0,0)时,
lim
(
x
,
y
)
→
(
0
,
0
)
x
ln
(
1
+
x
y
)
x
+
y
=
lim
(
x
,
y
)
→
(
0
,
0
)
x
2
y
x
+
y
=
lim
x
→
0
y
=
x
α
−
x
x
2
y
x
+
y
=
lim
x
→
0
x
α
+
2
−
x
3
x
α
=
lim
x
→
0
(
x
2
−
x
3
−
α
)
=
{
−
1
,
α
=
3
0
,
α
<
3
0
,
α
>
3
\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} x \frac{\ln (1+x y)}{x+y} &=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x+y} \\ &=\lim _{x \rightarrow 0 \atop y=x^{\alpha}-x} \frac{x^{2} y}{x+y}=\lim _{x \rightarrow 0} \frac{x^{\alpha+2}-x^{3}}{x^{\alpha}} \\ &=\lim _{x \rightarrow 0}\left(x^{2}-x^{3-\alpha}\right)=\left\{\begin{array}{ll} -1, & \alpha=3 \\ 0, & \alpha<3 \\ 0, & \alpha>3 \end{array}\right. \end{aligned}
(x,y)→(0,0)limxx+yln(1+xy)=(x,y)→(0,0)limx+yx2y=y=xα−xx→0limx+yx2y=x→0limxαxα+2−x3=x→0lim(x2−x3−α)=⎩⎨⎧−1,0,0,α=3α<3α>3
故极限不存在。
例题五:求极限
lim
(
x
,
y
)
→
(
0
,
0
)
x
y
x
+
y
\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x y}{x+y}
(x,y)→(0,0)limx+yxy
解析:当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
x
2
−
x
y=x^{2}-x
y=x2−x趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
(
x
,
y
)
→
(
0
,
0
)
x
y
x
+
y
=
lim
x
→
0
y
=
x
2
−
x
x
y
x
+
y
=
lim
x
→
0
x
(
x
2
−
x
)
x
+
x
2
−
x
=
lim
x
→
0
(
x
−
1
)
=
−
1
\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x+y} &=\lim _{x \rightarrow 0 \atop y=x^{2}-x} \frac{x y}{x+y} \\ &=\lim _{x \rightarrow 0} \frac{x\left(x^{2}-x\right)}{x+x^{2}-x} \\ &=\lim _{x \rightarrow 0}(x-1)=-1 \end{aligned}
(x,y)→(0,0)limx+yxy=y=x2−xx→0limx+yxy=x→0limx+x2−xx(x2−x)=x→0lim(x−1)=−1
当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
x
y=x
y=x趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
(
x
,
y
)
→
(
0
,
0
)
x
y
x
+
y
=
lim
x
→
0
y
=
x
x
y
x
+
y
=
lim
x
→
0
x
2
2
x
=
0
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x+y}=\lim _{x \rightarrow 0 \atop y=x} \frac{x y}{x+y}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x}=0
(x,y)→(0,0)limx+yxy=y=xx→0limx+yxy=x→0lim2xx2=0
故极限不存在。
例题六:求证
lim
(
x
,
y
)
→
(
0
,
0
)
x
y
\lim \limits_{(x, y) \rightarrow(0,0)} x^y
(x,y)→(0,0)limxy不存在
证明:当
(
x
,
y
)
(x,y)
(x,y)沿着
y
=
k
ln
x
y=\frac{k}{\ln x}
y=lnxk趋向于
(
0
,
0
)
(0,0)
(0,0)时,有
lim
(
x
,
y
)
→
(
0
,
0
)
x
y
=
e
k
\lim _{(x, y) \rightarrow(0,0)} x^y=e^k
(x,y)→(0,0)limxy=ek
所以极限不存在
例题七:求证
lim
(
x
,
y
)
→
(
1
,
1
3
)
tan
3
π
y
12
y
−
4
−
arctan
x
1
−
x
4
\lim \limits_{(x, y) \rightarrow\left(1, \frac{1}{3}\right)} \frac{\frac{\tan 3 \pi y}{12 y-4}-\arctan x}{1-x^{4}}
(x,y)→(1,31)lim1−x412y−4tan3πy−arctanx不存在
证明:
因为
tan
3
π
y
12
y
−
4
=
π
4
+
π
3
12
(
3
y
−
1
)
2
+
O
(
(
3
y
−
1
)
4
)
\frac{\tan 3 \pi y}{12 y-4}=\frac{\pi}{4}+\frac{\pi^{3}}{12}(3 y-1)^{2}+O\left((3 y-1)^{4}\right)
12y−4tan3πy=4π+12π3(3y−1)2+O((3y−1)4)
取
x
=
3
y
x=3y
x=3y,则
tan
3
π
y
12
y
−
4
−
arctan
x
=
1
−
x
2
+
o
(
1
−
x
)
lim
(
x
,
y
)
→
(
1
,
1
3
)
tan
3
π
y
12
y
−
4
−
arctan
x
1
−
x
4
=
lim
x
→
1
1
−
x
2
+
o
(
1
−
x
)
1
−
x
4
=
1
8
\begin{array}{l} \frac{\tan 3 \pi y}{12 y-4}-\arctan x=\frac{1-x}{2}+o(1-x) \\ \lim _{(x, y) \rightarrow\left(1, \frac{1}{3}\right)} \frac{\frac{\tan 3 \pi y}{12 y-4}-\arctan x}{1-x^{4}}=\lim _{x \rightarrow 1} \frac{\frac{1-x}{2}+o(1-x)}{1-x^{4}}=\frac{1}{8} \end{array}
12y−4tan3πy−arctanx=21−x+o(1−x)lim(x,y)→(1,31)1−x412y−4tan3πy−arctanx=limx→11−x421−x+o(1−x)=81
取
3
y
−
1
=
1
−
x
3
3 y-1=\sqrt[3]{1-x}
3y−1=31−x
则有
KaTeX parse error: Expected group after '_' at position 239: …{1-x^{4}}=\lim _̲\limits{x \righ…
故极限不存在。