超详细的Redisson原理解析
for update
select column from table where column = ... for update
在select的sql上加上for update会对此记录加上行级锁,在超时,提交,回滚会进行释放。
缺点
- 当请求等待锁释放时,不能灵活的控制加锁时间、等待锁的时间
- 如果在一个事务中,开始的时候就使用for update的话,则需要这个事务执行完提交或回滚才能够解锁,不能很好的控制锁的粒度,并发性会降低。
- 在Repeatable Read的隔离级别下有可能会产生死锁。https://www.cnblogs.com/micrari/p/8029710.html
项目中的redis锁
public ResultMap<IDCardOCRVo> IDCardOCR(IDCardOCRDto dto){
//部分省略。。。
//通过redis防重提交
Boolean ifAbsent = stringRedisTemplate.opsForValue().setIfAbsent(userId, "1");
if (ifAbsent) {
stringRedisTemplate.expire(userId, 15, TimeUnit.SECONDS);
}else {
throw new BusinessException(ResultCode.NOT_FREQUENTLY_OPERATE);
}
}
如果执行到if (ifAbsent)服务挂掉,那么这个userId就会一直存在redis中,别的请求一直获取不到,相当于死锁。
Redisson
地址
https://github.com/redisson/redisson
特点
Redisson 是架设在 Redis 基础上的一个 Java 驻内存数据网格框架, 充分利用 Redis 键值数据库提供的一系列优势, 基于 Java 实用工具包中常用接口, 为使用者提供了 一系列具有分布式特性的常用工具类
- 指定一个 key 作为锁标记,存入 Redis 中,指定一个 唯一的用户标识 作为 value。
- 当 key 不存在时才能设置值,确保同一时间只有一个客户端进程获得锁,满足 互斥性 特性。
- 设置一个过期时间,防止因系统异常导致没能删除这个 key,满足 防死锁 特性。
- 当处理完业务之后需要清除这个 key 来释放锁,清除 key 时需要校验 value 值,需要满足 只有加锁的人才能释放锁。
- WatchDog 机制 能够很好的解决锁续期的问题,预防死锁。
- 能够灵活的设置加锁时间,等待锁时间,释放锁失败后锁的存在时间。
流程图
原理
构建过程
org.redisson.Redisson#getLock
public RLock getLock(String name) {
return new RedissonLock(connectionManager.getCommandExecutor(), name);
}
public RedissonLock(CommandAsyncExecutor commandExecutor, String name) {
super(commandExecutor, name);
//异步处理的命令执行器
this.commandExecutor = commandExecutor;
//生成唯一id
this.id = commandExecutor.getConnectionManager().getId();
//锁存活时间,默认30s
this.internalLockLeaseTime = commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout();
//将id和业务key拼接,作为实际的key
this.entryName = id + ":" + name;
this.pubSub = commandExecutor.getConnectionManager().getSubscribeService().getLockPubSub();
}
加锁过程
org.redisson.RedissonLock#lock()
private void lock(long leaseTime, TimeUnit unit, boolean interruptibly) throws InterruptedException {
long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
return;
}
RFuture<RedissonLockEntry> future = subscribe(threadId);
if (interruptibly) {
commandExecutor.syncSubscriptionInterrupted(future);
} else {
commandExecutor.syncSubscription(future);
}
try {
while (true) {
ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
break;
}
// waiting for message
if (ttl >= 0) {
try {
future.getNow().getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
if (interruptibly) {
throw e;
}
future.getNow().getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
}
} else {
if (interruptibly) {
future.getNow().getLatch().acquire();
} else {
future.getNow().getLatch().acquireUninterruptibly();
}
}
}
} finally {
unsubscribe(future, threadId);
}
// get(lockAsync(leaseTime, unit));
}
private Long tryAcquire(long waitTime, long leaseTime, TimeUnit unit, long threadId) {
return get(tryAcquireAsync(waitTime, leaseTime, unit, threadId));
}
private <T> RFuture<Long> tryAcquireAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {
if (leaseTime != -1) {
return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime, internalLockLeaseTime,
TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
if (e != null) {
return;
}
// lock acquired
if (ttlRemaining == null) {
scheduleExpirationRenewal(threadId);
}
});
return ttlRemainingFuture;
}
我们直接调用的lock方法,这时leaseTime为-1,不执行if分支。
<T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
internalLockLeaseTime = unit.toMillis(leaseTime);
return evalWriteAsync(getName(), LongCodec.INSTANCE, command,
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"return redis.call('pttl', KEYS[1]);",
Collections.singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}
这时leaseTime为默认的30s,这段lua的执行是重点:
- 首先呢,他先用exists命令判断了待获取锁的key anyLock 存不存在,如果不存在,就使用hset命令将锁key testlock作为key的map结构中存入一对键值对,4afd01d9-48e8-4341-9358-19f0507a9dcc:397 1
- 同时还使用了pexpire命令给anyLock设置了过期时间30000毫秒,然后返回为空;
- 如果anyLock已经存在了,会走另一个分支,此时会判断anyLock Map中是否存在37f75873-494a-439c-a0ed-f102bc2f3204:1,如果存在的话,就调用hincrby命令自增这个key的值,并且将anyLock的过期时间设置为30000毫秒,并且返回空。
- 如果上面俩种情况都不是,那么就返回这个anyLock的剩余存活时间。
脚本也可以保证执行命令的原子性。然后呢就直接返回了一个RFuture ttlRemainingFuture,并且给他加了一个监听器,如果当前的这个异步加锁的步骤完成的时候调用,如果执行成功,就直接同步获取一个Long类型的ttlRemaining。通过加锁的lua脚本可知,如果加锁或者重入锁成功的话会发现TTLRemaining是为null的,那么就会执行下面的这一行代码,我们可以看到注释 锁已获得。
// lock acquired
if (ttlRemaining == null) {
scheduleExpirationRenewal(threadId);
}
以上我们分析了redisson加锁的过程,总结来说,流程不复杂,代码也很直观,主要是异步通过lua脚本执行了加锁的逻辑。
看门狗机制
其中,我们注意到了一些细节,比如 RedissonLock中的变量internalLockLeaseTime,默认值是30000毫秒,还有调用tryLockInnerAsync()传入的一个从连接管理器获取的getLockWatchdogTimeout(),他的默认值也是30000毫秒,这些都和redisson官方文档所说的watchdog机制有关,看门狗,还是很形象的描述这一机制,那么看门狗到底做了什么,为什么怎么做呢?下面我们就来分析和探讨一下。
加锁成功后的问题
- 假设在一个分布式环境下,多个服务实例请求获取锁,其中服务实例1成功获取到了锁,在执行业务逻辑的过程中,服务实例突然挂掉了或者hang住了,那么这个锁会不会释放,什么时候释放?
- 回答这个问题,自然想起来之前我们分析的lua脚本,其中第一次加锁的时候使用pexpire给锁key设置了过期时间,默认30000毫秒,由此来看如果服务实例宕机了,锁最终也会释放,其他服务实例也是可以继续获取到锁执行业务。但是要是30000毫秒之后呢,要是服务实例1没有宕机但是业务执行还没有结束,所释放掉了就会导致线程问题,这个redisson是怎么解决的呢?这个就一定要实现自动延长锁有效期的机制。
之前,我们分析到异步执行完lua脚本执行完成之后,设置了一个监听器,来处理异步执行结束之后的一些工作
private void scheduleExpirationRenewal(long threadId) {
ExpirationEntry entry = new ExpirationEntry();
ExpirationEntry oldEntry = EXPIRATION_RENEWAL_MAP.putIfAbsent(getEntryName(), entry);
if (oldEntry != null) {
oldEntry.addThreadId(threadId);
} else {
entry.addThreadId(threadId);
renewExpiration();
}
}
- 首先,会先判断在expirationRenewalMap中是否存在了entryName,这是个map结构,主要还是判断在这个服务实例中的加锁客户端的锁key是否存在,如果已经存在了,就直接返回;第一次加锁,肯定是不存在的。
- 接下来就是搞了一个TimeTask,延迟internalLockLeaseTime/3之后执行,这里就用到了文章一开始就提到奇妙的变量,算下来就是大约10秒钟执行一次,调用了一个异步执行的方法,renewExpirationAsync方法,也是调用异步执行了一段lua脚本
private void renewExpiration() {
ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());
if (ee == null) {
return;
}
Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
@Override
public void run(Timeout timeout) throws Exception {
ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());
if (ent == null) {
return;
}
Long threadId = ent.getFirstThreadId();
if (threadId == null) {
return;
}
RFuture<Boolean> future = renewExpirationAsync(threadId);
future.onComplete((res, e) -> {
if (e != null) {
log.error("Can't update lock " + getName() + " expiration", e);
EXPIRATION_RENEWAL_MAP.remove(getEntryName());
return;
}
if (res) {
// reschedule itself
renewExpiration();
}
});
}
}, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
ee.setTimeout(task);
}
首先判断这个锁key的map结构中是否存在对应的4afd01d9-48e8-4341-9358-19f0507a9dcc:397,如果存在,就直接调用pexpire命令设置锁key的过期时间,默认30000毫秒。
protected RFuture<Boolean> renewExpirationAsync(long threadId) {
return evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return 1; " +
"end; " +
"return 0;",
Collections.singletonList(getName()),
internalLockLeaseTime, getLockName(threadId));
}
- 在上面任务调度的方法中,也是异步执行并且设置了一个监听器,在操作执行成功之后,会回调这个方法,如果调用失败会打一个错误日志并返回,更新锁过期时间失败;
- 然后获取异步执行的结果,如果为true,就会调用本身,如此说来又会延迟10秒钟去执行这段逻辑,所以,这段逻辑在你成功获取到锁之后,会每隔十秒钟去执行一次,并且,在锁key还没有失效的情况下,会把锁的过期时间继续延长到30000毫秒,也就是说只要这台服务实例没有挂掉,并且没有主动释放锁,看门狗都会每隔十秒给你续约一下,保证锁一直在你手中。完美的操作。
其他实例没有获得锁的过程
这时如果有别的服务实例来尝试加锁又会发生什么情况呢?或者当前客户端的别的线程来获取锁呢?很显然,肯定会阻塞住,我们来通过代码看看是怎么做到的。还是把眼光放到之前分析的那段加锁lua代码上。
当加锁的锁key存在的时候并且锁key对应的map结构中当前客户端的唯一key也存在时,会去调用hincrby命令,将唯一key的值自增一,并且会pexpire设置key的过期时间为30000毫秒,然后返回nil,可以想象这里也是加锁成功的,也会继续去执行定时调度任务,完成锁key过期时间的续约,这里呢,就实现了锁的可重入性。
<T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
internalLockLeaseTime = unit.toMillis(leaseTime);
return evalWriteAsync(getName(), LongCodec.INSTANCE, command,
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"return redis.call('pttl', KEYS[1]);",
Collections.singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}
那么当以上这种情况也没有发生呢,这里就会直接返回当前锁的剩余有效期,相应的也不会去执行续约逻辑。此时一直返回到上面的方法:
如果加锁成功就直接返回,否则就会进入一个死循环,去尝试加锁,并且也会在等待一段时间之后一直循环尝试加锁,阻塞住,直到第一个服务实例释放锁。对于不同的服务实例尝试会获取一把锁,也和上面的逻辑类似,都是这样实现了锁的互斥。
private void lock(long leaseTime, TimeUnit unit, boolean interruptibly) throws InterruptedException {
long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
return;
}
RFuture<RedissonLockEntry> future = subscribe(threadId);
if (interruptibly) {
commandExecutor.syncSubscriptionInterrupted(future);
} else {
commandExecutor.syncSubscription(future);
}
try {
while (true) {
ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
break;
}
// waiting for message
if (ttl >= 0) {
try {
future.getNow().getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
if (interruptibly) {
throw e;
}
future.getNow().getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
}
} else {
if (interruptibly) {
future.getNow().getLatch().acquire();
} else {
future.getNow().getLatch().acquireUninterruptibly();
}
}
}
} finally {
unsubscribe(future, threadId);
}
// get(lockAsync(leaseTime, unit));
}
释放锁
public void unlock() {
try {
get(unlockAsync(Thread.currentThread().getId()));
} catch (RedisException e) {
if (e.getCause() instanceof IllegalMonitorStateException) {
throw (IllegalMonitorStateException) e.getCause();
} else {
throw e;
}
}
}
public RFuture<Void> unlockAsync(long threadId) {
RPromise<Void> result = new RedissonPromise<Void>();
RFuture<Boolean> future = unlockInnerAsync(threadId);
future.onComplete((opStatus, e) -> {
cancelExpirationRenewal(threadId);
if (e != null) {
result.tryFailure(e);
return;
}
if (opStatus == null) {
IllegalMonitorStateException cause = new IllegalMonitorStateException("attempt to unlock lock, not locked by current thread by node id: "
+ id + " thread-id: " + threadId);
result.tryFailure(cause);
return;
}
result.trySuccess(null);
});
return result;
}
判断当前客户端对应的唯一key的值是否存在,如果不存在就会返回nil;否则,值自增-1,判断唯一key的值是否大于零,如果大于零,则返回0;否则删除当前锁key,并返回1。
protected RFuture<Boolean> unlockInnerAsync(long threadId) {
return evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
"else " +
"redis.call('del', KEYS[1]); " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end; " +
"return nil;",
Arrays.asList(getName(), getChannelName()), LockPubSub.UNLOCK_MESSAGE, internalLockLeaseTime, getLockName(threadId));
}
返回到上一层方法,也是针对返回值进行了操作,如果返回值是1,则会去取消之前的定时续约任务,如果失败了,则会做一些类似设置状态的操作。
void cancelExpirationRenewal(Long threadId) {
ExpirationEntry task = EXPIRATION_RENEWAL_MAP.get(getEntryName());
if (task == null) {
return;
}
if (threadId != null) {
task.removeThreadId(threadId);
}
if (threadId == null || task.hasNoThreads()) {
Timeout timeout = task.getTimeout();
if (timeout != null) {
timeout.cancel();
}
EXPIRATION_RENEWAL_MAP.remove(getEntryName());
}
}
现在来说,redis分布式锁,redisson去加锁,也就是去redis集群中选择一台master实例去实现锁机制,并且能因为一台master可能会挂载多台slave实例,这样也就实现了高可用性。但是呢,不得不去思考,如果master和salve同步的过程中,master宕机了,偏偏在这之前某个服务实例刚刚写入了一把锁,这时候就尴尬了,salve还没有同步到这把锁,就被切换成了master,那么这时候可以说就有问题了,另一个服务实例在新的master上获取到一把新锁,这时候就会出现俩台服务实例都持有锁,执行业务逻辑的场景,这个是有问题的。也是在生产环境中我们需要去考虑的一个问题。
参考资料
- https://blog.csdn.net/ice24for/article/details/86085094?spm=1001.2014.3001.5502
- https://blog.csdn.net/ice24for/article/details/86177152
- https://mp.weixin.qq.com/s?__biz=MzU0OTk3ODQ3Ng==&mid=2247483893&idx=1&sn=32e7051116ab60e41f72e6c6e29876d9&chksm=fba6e9f6ccd160e0c9fa2ce4ea1051891482a95b1483a63d89d71b15b33afcdc1f2bec17c03c&scene=21#wechat_redirect