四边形不等式(dp优化)应用及证明(石子合并n^2)

石子合并是一道很经典的区间动规。

在n^3的暴力里面,我们的状态转移方程是:


f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+w[i][j])

f

[

i

]

[

j

]

=

m

i

n

(

f

[

i

]

[

j

]

,

f

[

i

]

[

k

]

+

f

[

k

+

1

]

[

j

]

+

w

[

i

]

[

j

]

)

现在我们有一种很牛逼的优化,可以把石子合并优化到接近O(n^2)

四边形不等式

我们先来看满足四边形不等式的条件:若
a<b<=c<d

a

<

b

<=

c

<

d


如果有
w[a][c]+w[b][d]<=w[a][d]+w[b][c]

w

[

a

]

[

c

]

+

w

[

b

]

[

d

]

<=

w

[

a

]

[

d

]

+

w

[

b

]

[

c

]

(交叉小于包含)(凸四边形不等式)
那么满足四边形不等式优化。

定理1:如果w满足凸四边形不等式,那么f也满足凸四边形不等式
定理2:如果f满足凸四边形不等式,我们定义
s[i][j]

s

[

i

]

[

j

]


f[i][j]

f

[

i

]

[

j

]

在状态转移时取得k为最优,那么
s[i][j]=k

s

[

i

]

[

j

]

=

k

,此时是
s[i][j]

s

[

i

]

[

j

]

满足决策单调性,也就是
s[i][j1]<=s[i][j]<=s[i+1][j]

s

[

i

]

[

j

1

]

<=

s

[

i

]

[

j

]

<=

s

[

i

+

1

]

[

j

]

首先我们先跳过定理的证明(假装我们明白了这些定理的证明咳咳咳),来看看如何通过定理来优化。

既然知道了这个定理,那我们就可以优化掉原本k的那一层循环,转化为优美的O(n^2)啦

代码:

    for(int l=3;l<=n;++l)
     for(int i=1;i<=n-l+1;++i)
      {
        int j=i+l-1;
        dp[i][j]=INF;
        for(int k=s[i][j-1];k<=s[i+1][j];++k) 
         if((dp[i][k]+dp[k+1][j]+a[j]-a[i-1])<dp[i][j])
          s[i][j]=k,dp[i][j]=dp[i][k]+dp[k+1][j]+a[j]-a[i-1];
      }

ps:O(n)预处理出s[i][i+1]与dp[i][i+1]

简单证明

下面我们来证明几个定理。
假设我们已经证明出了
w[a][c]+w[b][d]<=w[a][d]+w[b][c]a<b<=c<d

w

[

a

]

[

c

]

+

w

[

b

]

[

d

]

<=

w

[

a

]

[

d

]

+

w

[

b

]

[

c

]

a

<

b

<=

c

<

d


现在我们来推导f函数也满足四边形不等式。
假设
s[a][d]=s,s[b][c]=t

s

[

a

]

[

d

]

=

s

,

s

[

b

]

[

c

]

=

t


由于对称性,我们可以假设
s<t

s

<

t

(也就是说反过来也可以)
那么我们可以得到
s+1<t+1<c<d

s

+

1

<

t

+

1

<

c

<

d


那么

f[a][c]+f[b][d]<=f[a][s]+f[s+1][c]+w[a][c]+f[b][t]+f[t+1][d]+w[b][d]

f

[

a

]

[

c

]

+

f

[

b

]

[

d

]

<=

f

[

a

]

[

s

]

+

f

[

s

+

1

]

[

c

]

+

w

[

a

]

[

c

]

+

f

[

b

]

[

t

]

+

f

[

t

+

1

]

[

d

]

+

w

[

b

]

[

d

]



<=f[a][s]+f[s+1][c]+f[b][t]+f[t+1][d]+w[a][d]+w[b][c]

<=

f

[

a

]

[

s

]

+

f

[

s

+

1

]

[

c

]

+

f

[

b

]

[

t

]

+

f

[

t

+

1

]

[

d

]

+

w

[

a

]

[

d

]

+

w

[

b

]

[

c

]

<script type="math/tex" id="MathJax-Element-147"><=f[a][s]+f[s+1][c]+f[b][t]+f[t+1][d]+w[a][d]+w[b][c]</script>

<=f[a][s]+f[t+1][c]+f[b][t]+f[z+1][d]+w[a][d]+w[b][c]

<=

f

[

a

]

[

s

]

+

f

[

t

+

1

]

[

c

]

+

f

[

b

]

[

t

]

+

f

[

z

+

1

]

[

d

]

+

w

[

a

]

[

d

]

+

w

[

b

]

[

c

]

<script type="math/tex" id="MathJax-Element-148"><=f[a][s]+f[t+1][c]+f[b][t]+f[z+1][d]+w[a][d]+w[b][c]</script>(用了数学归纳法)

<=f[a][d]+f[b][c]

<=

f

[

a

]

[

d

]

+

f

[

b

]

[

c

]

<script type="math/tex" id="MathJax-Element-149"><=f[a][d]+f[b][c]</script>

得证。

那么我们再来证明定理2 也就是
s[i][j]

s

[

i

]

[

j

]

满足决策单调性


fk[i,j]=f[i,k]+f[k,j]s[i,j]=d

f

k

[

i

,

j

]

=

f

[

i

,

k

]

+

f

[

k

,

j

]

s

[

i

,

j

]

=

d



mk[i+1,j]md[i+1,j])(mk[i,j]md[i,j])

m

k

[

i

+

1

,

j

]

m

d

[

i

+

1

,

j

]

)

(

m

k

[

i

,

j

]

m

d

[

i

,

j

]

)



=(mk[i+1,j]+md[i,j])(md[i+1,j]+mk[i,j])

=

(

m

k

[

i

+

1

,

j

]

+

m

d

[

i

,

j

]

)

(

m

d

[

i

+

1

,

j

]

+

m

k

[

i

,

j

]

)



=(m[i+1,k]+m[k,j]+m[i,d]+m[d,j])(m[i+1,d]+m[d,j]+m[i,k]+m[k,j])

=

(

m

[

i

+

1

,

k

]

+

m

[

k

,

j

]

+

m

[

i

,

d

]

+

m

[

d

,

j

]

)

(

m

[

i

+

1

,

d

]

+

m

[

d

,

j

]

+

m

[

i

,

k

]

+

m

[

k

,

j

]

)



=(m[i+1,k]+m[i,d])(m[i+1,d]+m[i,k])

=

(

m

[

i

+

1

,

k

]

+

m

[

i

,

d

]

)

(

m

[

i

+

1

,

d

]

+

m

[

i

,

k

]

)


∵m满足四边形不等式
∴对于
i<i+1k<d

i

<

i

+

1

k

<

d


m[i+1,k]+m[i,d]m[i+1,d]+m[i,k]

m

[

i

+

1

,

k

]

+

m

[

i

,

d

]

m

[

i

+

1

,

d

]

+

m

[

i

,

k

]



(mk[i+1,j]md[i+1,j])(mk[i,j]md[i,j])0

(

m

k

[

i

+

1

,

j

]

m

d

[

i

+

1

,

j

]

)

(

m

k

[

i

,

j

]

m

d

[

i

,

j

]

)

0



s[i,j]s[i+1,j]

s

[

i

,

j

]

s

[

i

+

1

,

j

]

,同理可证
s[i,j1]s[i,j]

s

[

i

,

j

1

]

s

[

i

,

j

]

证毕


版权声明:本文为a1035719430原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
THE END
< <上一篇
下一篇>>