tf.nn.nce_loss
http://www.jianshu.com/p/fab82fa53e16
这两天因为实现mxnet的nce-loss,因此研究了一下tensorflow的nce-loss的实现。所以总结一下。
先看看tensorflow的nce-loss的API:
def nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy="mod", name="nce_loss")
假设nce_loss之前的输入数据是K维的,一共有N个类,那么
- weight.shape = (N, K)
- bias.shape = (N)
- inputs.shape = (batch_size, K)
- labels.shape = (batch_size, num_true)
- num_true : 实际的正样本个数
- num_sampled: 采样出多少个负样本
- num_classes = N
- sampled_values: 采样出的负样本,如果是None,就会用不同的sampler去采样。待会儿说sampler是什么。
- remove_accidental_hits: 如果采样时不小心采样到的负样本刚好是正样本,要不要干掉
- partition_strategy:对weights进行embedding_lookup时并行查表时的策略。TF的embeding_lookup是在CPU里实现的,这里需要考虑多线程查表时的锁的问题。
nce_loss的实现逻辑如下:
- _compute_sampled_logits: 通过这个函数计算出正样本和采样出的负样本对应的output和label
- sigmoid_cross_entropy_with_logits: 通过 sigmoid cross entropy来计算output和label的loss,从而进行反向传播。这个函数把最后的问题转化为了num_sampled+num_real个两类分类问题,然后每个分类问题用了交叉熵的损伤函数,也就是logistic regression常用的损失函数。TF里还提供了一个softmax_cross_entropy_with_logits的函数,和这个有所区别。
再来看看TF里word2vec的实现,他用到nce_loss的代码如下:
loss = tf.reduce_mean( tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels, num_sampled, vocabulary_size))
可以看到,它这里并没有传sampled_values,那么它的负样本是怎么得到的呢?继续看nce_loss的实现,可以看到里面处理sampled_values=None的代码如下:
if sampled_values is None: sampled_values = candidate_sampling_ops.log_uniform_candidate_sampler( true_classes=labels, num_true=num_true, num_sampled=num_sampled, unique=True, range_max=num_classes)
所以,默认情况下,他会用log_uniform_candidate_sampler去采样。那么log_uniform_candidate_sampler是怎么采样的呢?他的实现在这里:
- 他会在[0, range_max)中采样出一个整数k
- P(k) = (log(k + 2) - log(k + 1)) / log(range_max + 1)
可以看到,k越大,被采样到的概率越小。那么在TF的word2vec里,类别的编号有什么含义吗?看下面的代码:
def build_dataset(words): count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary
可以看到,TF的word2vec实现里,词频越大,词的类别编号也就越大。因此,在TF的word2vec里,负采样的过程其实就是优先采词频高的词作为负样本。
在提出负采样的原始论文中, 包括word2vec的原始C++实现中。是按照热门度的0.75次方采样的,这个和TF的实现有所区别。但大概的意思差不多,就是越热门,越有可能成为负样本。
作者:xlvector
链接:http://www.jianshu.com/p/fab82fa53e16
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。