深蓝-视觉slam-第四节习题
1,图像去畸变
实现代码:
#include <opencv2/opencv.hpp>
#include <string>
using namespace std;
string iamge_file = "../test.png";
int main(int argc, char **argv)
{
//畸变系数
double k1 = -0.28340811, k2 = 0.07395907, p1 = 0.00019359, p2 = 1.76187114e-05;
// 内参
double fx = 458.654, fy = 457.296, cx = 367.215, cy = 248.375;
cv::Mat image = cv::imread(iamge_file, 0);
int rows = image.rows, cols = image.cols;
cv::Mat image_undistort = cv::Mat(rows, cols, CV_8UC1);
for(int v = 0; v < rows; v++) {
for(int u = 0; u < cols; u++) {
double u_distorted = 0, v_distorted = 0;
double x = (u - cx) / fx;
double y = (v - cy) / fy;
double r = sqrt(x * x + y * y);
double x_distorted = x * (1 + k1 * r * r + k2 * r * r * r * r) + 2 * p1 * x * y + p2 * (r * r + 2* x * x);
double y_distorted = y * ( 1 + k1 * r * r + k2 *r * r * r *r) + p1 * (r * r + 2 * y * y) + 2 * p2 * x * y;
u_distorted = fx * x_distorted +cx;
v_distorted = fy * y_distorted + cy;
if(u_distorted >= 0 && v_distorted >= 0 && u_distorted < cols && v_distorted < rows) {
image_undistort.at<uchar>(v, u) = image.at<uchar>((int) v_distorted, (int) u_distorted);
} else {
image_undistort.at<uchar>(v, u) = 0;
}
}
}
cv::imshow("image distorted ", image);
cv::imshow("image undistorted", image_undistort);
cv::waitKey(0);
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.6)
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(undistort_image undistort_image.cpp)
target_link_libraries(undistort_image ${OpenCV_LIBS})
实现效果:
2,鱼眼模型与去畸变
(1)与针孔相机原理不同, 鱼眼相机采用非相似成像,在成像过程中引入畸变,通过对直径空间的压缩,突破成像视角的局限,从而达到广角成像。鱼眼相机具有更宽的视场,因此在相同的传感器区域中包含了更多的信息,这个对物体检测,视觉里程计和3D见图尤为有利。
(2)在OpenCV中,鱼眼相机是采用等距模型进行标定的。畸变类型也不是简单的由上述的径向畸变和切向畸变描述的。
(3)实现代码:
#include <opencv2/opencv.hpp>
std::string input_file = "../fisheye.jpg";
int main(int argc, char **argv) {
// 本程序实现鱼眼的等距投影去畸变模型
// 畸变参数(本例设为零)
double k1 = 0, k2 = 0, k3 = 0, k4 = 0;
// 内参
double fx = 689.21, fy = 690.48, cx = 1295.56, cy = 942.17;
cv::Mat image = cv::imread(input_file);
int rows = image.rows, cols = image.cols;
cv::Mat image_undistort = cv::Mat(rows, cols, CV_8UC3); // 去畸变以后的图
// 计算去畸变后图像的内容
for (int v = 0; v < rows; v++)
for (int u = 0; u < cols; u++) {
double u_distorted = 0, v_distorted = 0;
// start your code here
double x= (u - cx)/fx, y = (v - cy)/fy;
double r = sqrt(x * x + y * y);
double theta = atan(r);
double theta_d = theta * (1 + k1 * pow(theta, 2) + k2 * pow(theta, 4) + k3 * pow(theta,6) + k4 * pow(theta, 8));
double scale = theta_d / r;
double x_distorted = scale *x;
double y_distorted = scale * y;
//去畸变后变换到像素
u_distorted = fx * x_distorted + cx;
v_distorted = fy * y_distorted + cy;
// 赋值 (最近邻插值)
if (u_distorted > 0 && v_distorted > 0 && u_distorted < cols &&
v_distorted < rows) {
image_undistort.at<cv::Vec3b>(v, u) =
image.at<cv::Vec3b>((int)v_distorted, (int)u_distorted);
} else {
image_undistort.at<cv::Vec3b>(v, u) = 0;
}
}
// 画图去畸变后图像
cv::imshow("image undistorted", image_undistort);
// cv::imshow("fisheye", image);
cv::imwrite("fisheye_undist.jpg", image_undistort);
cv::waitKey();
return 0;
}
CMakeLists.txt:
cmake_minimum_required(VERSION 3.16.3)
project(FISHE)
find_package(OpenCV 3.4.12 REQUIRED)
add_executable(fisheye fisheye.cpp)
target_link_libraries(fisheye ${OpenCV_LIBS})
实现效果:
(4)参考:https://blog.csdn.net/Gavinv/article/details/78386465?spm=1001.2014.3001.5502
由opencv官网给出的鱼眼相机模型为
θ
d
=
θ
(
k
1
θ
2
+
k
2
θ
4
+
k
3
θ
6
+
k
4
θ
8
)
\theta_d = \theta (k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)
θd=θ(k1θ2+k2θ4+k3θ6+k4θ8)等距投影函数 :
r
=
f
θ
r = f \theta
r=fθ 通过泰勒公式展开,由于畸变参数
k
1
,
k
2
,
k
3
,
k
4
k_1, k_2,k_3,k_4
k1,k2,k3,k4都等与0,只保留
θ
\theta
θ一次项,相当于畸变系数
k
0
=
1
k_0 = 1
k0=1, 仍然含有畸变参数,所以即使
k
1
,
k
2
,
k
3
,
k
4
k_1, k_2,k_3,k_4
k1,k2,k3,k4 都为0,仍可以对畸变图进行校正。
(5)去畸变虽然解决了鱼眼相机的3D建图问题,但同时由校正后的图像可以看出也消除了鱼眼相机的主要优点,靠近图像边缘的信息高度失真,而靠近中心的对象被高度压缩。
在原有畸变校正公式中加入了尺度因子。首先,基于尺度因子建立新的图 像矩阵,因为畸变校正导致的边缘损失范围较小,因此尺度因子选为2可以满足大多数情况 要求,新建立的图像矩阵除左上角四分之一面积为源图像像素值,其他范围为全零矩阵,新 图像长宽为原始图像的2倍;然后将待校正图像平移至新图像中心区域,然后进行图像径向 畸变校正,校正完毕后获取图像中四个角点像素位置,提取矩形区域作为校正后的图像。这 样获取的校正后图像的完整信息都得到保留,但是会引入边缘的零像素区域,由于相邻相 机拍摄区域具有重叠部分,因此零像素区域可以通过重叠区域融合模块去除,最终实现在 无边缘损失的情况下的图像校正功能。
3,双目视差的使用
1.1 已知像素u,v,d求空间点坐标
x,y是相机坐标下的归一化平面上的坐标,此时的z = 1 , b 表示基线,d代表视差
x = (u - cx) / fx, y = (v - cy) / fy; z = fx * b / d;
由此可得,相机模型下三维点的坐标X,Y,Z为X = x * z; Y = y * z; Z = z;
1.2 已知相机模型下相机坐标的X,Y,Z求u,v,d
由三角形相似关系可以得到:(Z - f) / Z = (b - uL +uR) / b,在 整理可得到Z = (f - b) / (uL - uR),整理得到 视差d = uL - uR;
(X/Z , Y/Z ,Z/Z),为归一化平面上的点,然后乘以相机的内参就可以得到对应的像素坐标u,v
u = fx * X/Z + cx , v = fy * Y/z + cy;
题外知识:单目相机成像原理:
- 世界坐标系下有一个点P,世界坐标系为Pw.
- 由于相机在运动,它的运动由R,t或变换矩阵T描述。P的相机坐标为RPw + t;
- 这时Pc的分量为X,Y,Z,把他们投影到归一化平面上得到归一化坐标:Pc =
[
X
/
Z
,
Y
/
Z
,
1
]
T
[X/Z, Y/Z, 1]^T
- 有畸变时,根据畸变参数计算Pc发生畸变后的坐标;
- P的归一化坐标经过内参后,对应它的像素坐标为:Puv = KPc;
我们谈到了四种坐标:世界坐标,相机坐标,归一化坐标和像素坐标。
Z
P
u
v
=
Z
[
u
v
1
]
=
K
(
R
P
w
+
t
)
=
K
T
P
w
(1 )
ZP_{uv}= Z \left[\begin{matrix}u\\v \\1\end{matrix}\right] = K(RP_w + t) = KTP_w\tag{1 }
[
u
v
1
]
=
1
Z
[
f
x
0
c
x
0
f
y
c
y
0
0
1
]
[
X
Y
Z
]
(2)
\left[ \begin{matrix} u \\ v \\ 1 \end{matrix} \right] = \frac{1}{Z}\left[ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y\\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} X\\ Y \\ Z \end{matrix} \right] \tag{2}
⎣⎡uv1⎦⎤=Z1⎣⎡fx000fy0cxcy1⎦⎤⎣⎡XYZ⎦⎤(2)
2.1 推导在右目模型下该模型的变化
左右眼的相机内参是相同的。在右眼模型下,世界坐标系下的点Pw,在左眼相机坐标系下的坐标为RPw + t, 而左眼和右眼的相机坐标系只是发生了平移,即右眼坐标系下的坐标为PRw + t + b(基线),然后把该相机下的坐标在归一化平面表示,然后利用内参将其转为像素坐标即可。
3 编程
3.1 编程部分代码
#include <opencv2/opencv.hpp>
#include <string>
#include <Eigen/Core>
#include <pangolin/pangolin.h>
#include <unistd.h>
using namespace std;
using namespace Eigen;
// 文件路径,如果不对,请调v
string left_file = "../left.png";
string right_file = "../right.png";
string disparity_file = "../disparity.png";
// 在panglin中画图,已写好,无需调整
void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud);
int main(int argc, char **argv) {
// 内参
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
// 间距
double d = 0.573;
// 读取图像
cv::Mat left = cv::imread(left_file, 0);
cv::Mat right = cv::imread(right_file, 0);
cv::Mat disparity = cv::imread(disparity_file, 0); // disparty 为CV_8U,单位为像素
// 生成点云
vector<Vector4d, Eigen::aligned_allocator<Vector4d>> pointcloud;
// TODO 根据双目模型计算点云
// 如果你的机器慢,请把后面的v++和u++改成v+=2, u+=2
for (int v = 0; v < left.rows; v++)
for (int u = 0; u < left.cols; u++) {
// if( disparity.at<float>(v, u) <= 10.0 || disparity.at<float>(v, u) >= 96.0) {
// continue;
// }
Vector4d point(0, 0, 0, left.at<uchar>(v, u) / 255.0); // 前三维为xyz,第四维为颜色
// 根据双目模型计算 point 的位置
double x = (u - cx) / fx;
double y = (v - cy) / fy;
double depth = fx * d / (disparity.at<char>(v, u));
point[0] = x * depth;
point[1] = y * depth;
point[2] = depth;
pointcloud.push_back(point);
}
cv::imshow("disparity", disparity);
cv::waitKey(0);
// 画出点云
showPointCloud(pointcloud);
return 0;
}
void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud) {
if (pointcloud.empty()) {
cerr << "Point cloud is empty!" << endl;
return;
}
pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);
glEnable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
pangolin::OpenGlRenderState s_cam(
pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
);
pangolin::View &d_cam = pangolin::CreateDisplay()
.SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
.SetHandler(new pangolin::Handler3D(s_cam));
while (pangolin::ShouldQuit() == false) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //清空颜色和深度缓
d_cam.Activate(s_cam);//激活显示,并设置相机的状态
glClearColor(1.0f, 1.0f, 1.0f, 1.0f); //设置背景颜色为白色
glPointSize(2);
glBegin(GL_POINTS);
for (auto &p: pointcloud) {
glColor3f(p[3], p[3], p[3]);
glVertex3d(p[0], p[1], p[2]);
}
glEnd();
pangolin::FinishFrame();
usleep(5000); // sleep 5 ms
}
return;
}
3.2 CMakeLists.txt
cmake_minimum_required(VERSION 3.6)
find_package(Pangolin REQUIRED)
find_package(OpenCV REQUIRED)
include_directories(${Pangolin_INCLUDE_DIRS})
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories("/usr/include/Eigen")
add_executable(right-left disparity.cpp)
target_link_libraries(right-left ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Eigen_LIBRARIES})
3.3 实现效果
4,矩阵运算微分
(1)
d
(
A
x
)
d
x
=
A
T
\frac{d(Ax)}{d_x} = A^T
dxd(Ax)=AT
(2)
(3)
5,高斯牛顿法的曲线拟合实验
程序代码:
#include <iostream>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main(int argc, char ** argv[])
{
double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值
double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值
int N = 100; // 数据点
double w_sigma = 1.0; // 噪声Sigma值
cv::RNG rng;
vector<double> x_data, y_data;
for(int i = 0; i < N; i++) {
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma));
}
int interations = 100;
double cost = 0, lastcost = 0;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
for(int iter = 0; iter < interations; iter++) {
Matrix3d H = Matrix3d::Zero();
Vector3d b = Vector3d::Zero();
cost = 0;
for(int i = 0; i < N; i++) {
double xi = x_data[i], yi = y_data[i];
double error = 0;
error = yi - exp(ae * xi * xi + be * xi + ce);
Vector3d J;
J[0] = - xi * xi * exp(ae * xi * xi + be * xi + ce);
J[1] = -xi * exp(ae * xi * xi + be * xi + ce);
J[2] = -exp(ae * xi * xi + be * xi + ce);
H += w_sigma * w_sigma * J * J.transpose();
b += - w_sigma * w_sigma * error * J;
cost = error * error;
}
Vector3d dx = H.ldlt().solve(b);
if(isnan(dx[0])) {
cout << "result is nan!" << endl;
break;
}
if(iter > 0 && cost >= lastcost) {
cout << "cost " << cost << " >= last cost " << lastcost << "break" << endl;
break;
}
ae += dx[0];
be += dx[1];
ce += dx[2];
lastcost = cost ;
cout << "total cost :" << cost << endl;
cout << "updata :" << dx.transpose() << endl;
cout << "testimated params:" << ae << "," << be << "," << ce << endl;
}
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
// cout << "solve time cost =" << time_used.count() << "second" << endl;
printf("\033[47;32m ssolve time cost = %lf\033[0m\n" ,time_used.count());
// cout << "estimated abc =" << ae << "," << be << "," << ce << endl;
printf("\033[47;32m stimated abc = %lf, %lf, %lf\033[0m\n" ,ae , be, ce);
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.6)
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(gauss gaussnewton.cpp)
target_link_libraries(gauss ${OpenCV_LIBS})
运行结果:
6,批量最大似然估计
1,求H的具体形式
2,求信息矩阵W的形式
3,
最后一题来源: